
Video Dataset Loading PyTorch
Release 1.0

Raivo Koot

Dec 31, 2021

CONTENTS

1 VideoDataset module 1

2 Efficient Video Dataset Loading, Preprocessing, and Augmentation 3
2.1 Overview: This example demonstrates the use of VideoFrameDataset 3
2.2 QuickDemo (demo.py) . 4

3 Table of Contents 5
3.1 1. Requirements . 5
3.2 2. Custom Dataset . 5
3.3 3. Video Frame Sampling Method . 6
3.4 4. Using VideoFrameDataset for training . 6
3.5 5. Conclusion . 7
3.6 6. Acknowledgements . 7

Python Module Index 9

Index 11

i

ii

CHAPTER

ONE

VIDEODATASET MODULE

class video_dataset.ImglistToTensor
Bases: torch.nn.modules.module.Module

Converts a list of PIL images in the range [0,255] to a torch.FloatTensor of shape (NUM_IMAGES x CHAN-
NELS x HEIGHT x WIDTH) in the range [0,1]. Can be used as first transform for VideoFrameDataset.

static forward(img_list: List[PIL.Image.Image])→ torch.Tensor[NUM_IMAGES, CHANNELS,
HEIGHT, WIDTH]

Converts each PIL image in a list to a torch Tensor and stacks them into a single tensor.

Parameters img_list – list of PIL images.

Returns tensor of size NUM_IMAGES x CHANNELS x HEIGHT x WIDTH

class video_dataset.VideoFrameDataset(root_path: str, annotationfile_path: str,
num_segments: int = 3, frames_per_segment:
int = 1, imagefile_template: str = 'img_{:05d}.jpg',
transform=None, test_mode: bool = False)

Bases: torch.utils.data.dataset.Dataset

A highly efficient and adaptable dataset class for videos. Instead of loading every frame of a video, loads
x RGB frames of a video (sparse temporal sampling) and evenly chooses those frames from start to end of
the video, returning a list of x PIL images or FRAMES x CHANNELS x HEIGHT x WIDTH tensors where
FRAMES=x if the ImglistToTensor() transform is used.

More specifically, the frame range [START_FRAME, END_FRAME] is divided into NUM_SEGMENTS seg-
ments and FRAMES_PER_SEGMENT consecutive frames are taken from each segment.

Note: A demonstration of using this class can be seen in demo.py https://github.com/RaivoKoot/
Video-Dataset-Loading-Pytorch

Note: This dataset broadly corresponds to the frame sampling technique introduced in Temporal Segment
Networks at ECCV2016 https://arxiv.org/abs/1608.00859.

Note: This class relies on receiving video data in a structure where inside a ROOT_DATA folder, each video
lies in its own folder, where each video folder contains the frames of the video as individual files with a
naming convention such as img_001.jpg . . . img_059.jpg. For enumeration and annotations, this class ex-
pects to receive the path to a .txt file where each video sample has a row with four (or more in the case
of multi-label, see README on Github) space separated values: VIDEO_FOLDER_PATH START_FRAME
END_FRAME LABEL_INDEX. VIDEO_FOLDER_PATH is expected to be the path of a video folder excluding

1

https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch
https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch
https://arxiv.org/abs/1608.00859

Video Dataset Loading PyTorch, Release 1.0

the ROOT_DATA prefix. For example, ROOT_DATA might be home\data\datasetxyz\videos\, inside
of which a VIDEO_FOLDER_PATH might be jumping\0052\ or sample1\ or 00053\.

Parameters

• root_path – The root path in which video folders lie. this is ROOT_DATA from the
description above.

• annotationfile_path – The .txt annotation file containing one row per video sample
as described above.

• num_segments – The number of segments the video should be divided into to sample
frames from.

• frames_per_segment – The number of frames that should be loaded per segment.
For each segment’s frame-range, a random start index or the center is chosen, from which
frames_per_segment consecutive frames are loaded.

• imagefile_template – The image filename template that video frame files have inside
of their video folders as described above.

• transform – Transform pipeline that receives a list of PIL images/frames.

• test_mode – If True, frames are taken from the center of each segment, instead of a
random location in each segment.

2 Chapter 1. VideoDataset module

CHAPTER

TWO

EFFICIENT VIDEO DATASET LOADING, PREPROCESSING, AND
AUGMENTATION

To get the most up-to-date README, please visit Github: Video Dataset Loading Pytorch

Author: Raivo Koot

If you are completely unfamiliar with loading datasets in PyTorch using torch.utils.data.Dataset and
torch.utils.data.DataLoader, I recommend getting familiar with these first through this or this.

2.1 Overview: This example demonstrates the use of
VideoFrameDataset

The VideoFrameDataset class serves to easily, efficiently and effectively load video samples from
video datasets in PyTorch.

1) Easily because this dataset class can be used with custom datasets with minimum effort and no modifica-
tion. The class merely expects the video dataset to have a certain structure on disk and expects a .txt an-
notation file that enumerates each video sample. Details on this can be found below and at https://
video-dataset-loading-pytorch.readthedocs.io/.

2) Efficiently because the video loading pipeline that this class implements is very fast. This minimizes GPU waiting
time during training by eliminating input bottlenecks that can slow down training time by several folds.

3) Effectively because the implemented sampling strategy for video frames is very strong. Video training using the
entire sequence of video frames (often several hundred) is too memory and compute intense. Therefore, this imple-
mentation samples frames evenly from the video (sparse temporal sampling) so that the loaded frames represent every
part of the video, with support for arbitrary and differing video lengths within the same dataset. This approach has
shown to be very effective and is taken from “Temporal Segment Networks (ECCV2016)” with modifications.

In conjunction with PyTorch’s DataLoader, the VideoFrameDataset class returns video batch tensors of size BATCH
x FRAMES x CHANNELS x HEIGHT x WIDTH.

For a demo, visit https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch.

3

https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch
https://github.com/RaivoKoot
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://github.com/utkuozbulak/pytorch-custom-dataset-examples
https://arxiv.org/abs/1608.00859

Video Dataset Loading PyTorch, Release 1.0

2.2 QuickDemo (demo.py)

root = os.path.join(os.getcwd(), 'demo_dataset') # Folder in which all videos lie in
→˓a specific structure
annotation_file = os.path.join(root, 'annotations.txt') # A row for each video
→˓sample as: (VIDEO_PATH NUM_FRAMES CLASS_INDEX)

""" DEMO 1 WITHOUT IMAGE TRANSFORMS """
dataset = VideoFrameDataset(

root_path=root,
annotationfile_path=annotation_file,
num_segments=5,
frames_per_segment=1,
image_template='img_{:05d}.jpg',
transform=None,
random_shift=True,
test_mode=False

)

sample = dataset[0] # take first sample of dataset
frames = sample[0] # list of PIL images
label = sample[1] # integer label

for image in frames:
plt.imshow(image)
plt.title(label)
plt.show()
plt.pause(1)

4 Chapter 2. Efficient Video Dataset Loading, Preprocessing, and Augmentation

CHAPTER

THREE

TABLE OF CONTENTS

• 1. Requirements

• 2. Custom Dataset

• 3. Video Frame Sampling Method

• 4. Using VideoFrameDataset for Training

• 5. Conclusion

• 6. Acknowledgements

3.1 1. Requirements

Without these three, VideoFrameDataset will not work.
torchvision >= 0.8.0
torch >= 1.7.0
python >= 3.6

3.2 2. Custom Dataset

To use any dataset, two conditions must be met. 1) The video data must be supplied as RGB frames, each frame
saved as an image file. Each video must have its own folder, in which the frames of that video lie. The frames of
a video inside its folder must be named uniformly as img_00001.jpg . . . img_00120.jpg, if there are 120
frames. The filename template for frames is then “img_{:05d}.jpg” (python string formatting, specifying 5 digits after
the underscore), and must be supplied to the constructor of VideoFrameDataset as a parameter. Each video folder lies
inside a root folder of this dataset. 2) To enumerate all video samples in the dataset and their required metadata, a
.txt annotation file must be manually created that contains a row for each video sample in the dataset. The training,
validation, and testing datasets must have separate annotation files. Each row must be a space-separated list that
contains VIDEO_PATH NUM_FRAMES CLASS_INDEX. The VIDEO_PATH of a video sample should be provided
without the root prefix of this dataset.

This example project demonstrates this using a dummy dataset inside of demo_dataset/, which is the root
dataset folder of this example. The folder structure looks as follows:

demo_dataset

annotations.txt
jumping # arbitrary class folder naming

0001 # arbitrary video folder naming

(continues on next page)

5

Video Dataset Loading PyTorch, Release 1.0

(continued from previous page)

img_00001.jpg
.

img_00017.jpg
0002

img_00001.jpg
.

img_00018.jpg

running # arbitrary folder naming
0001 # arbitrary video folder naming

img_00001.jpg
.

img_00015.jpg
0002

img_00001.jpg
.

img_00015.jpg

The accompanying annotation .txt file contains the following rows

jumping/0001 17 0
jumping/0002 18 0
running/0001 15 1
running/0002 15 1

Instantiating a VideoFrameDataset with the root_path parameter pointing to demo_dataset, the
annotationsfile_path parameter pointing to the annotation file, and the imagefile_template param-
eter as “img_{:05d}.jpg”, is all that it takes to start using the VideoFrameDataset class.

3.3 3. Video Frame Sampling Method

When loading a video, only a number of its frames are loaded. They are chosen in the following way: 1. The frame
indices [1,N] are divided into NUM_SEGMENTS even segments. From each segment, FRAMES_PER_SEGMENT
consecutive indices are chosen at random. This results in NUM_SEGMENTS*FRAMES_PER_SEGMENT chosen
indices, whose frames are loaded as PIL images and put into a list and returned when calling dataset[i].

3.4 4. Using VideoFrameDataset for training

As demonstrated in https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch/blob/
main/demo.py, we can use PyTorch’s torch.utils.data.DataLoader class with VideoFrameDataset to
take care of shuffling, batching, and more. To turn the lists of PIL images returned by VideoFrameDataset into ten-
sors, the transform video_dataset.imglist_totensor() can be supplied as the transform parameter to
VideoFrameDataset. This turns a list of N PIL images into a batch of images/frames of shape N x CHANNELS x
HEIGHT x WIDTH. We can further chain preprocessing and augmentation functions that act on batches of images
onto the end of imglist_totensor().

As of torchvision 0.8.0, all torchvision transforms can now also operate on batches of images, and they apply
deterministic or random transformations on the batch identically on all images of the batch. Therefore, any torchvision
transform can be used here to apply video-uniform preprocessing and augmentation.

6 Chapter 3. Table of Contents

Video Dataset Loading PyTorch, Release 1.0

3.5 5. Conclusion

A proper code-based explanation on how to use VideoFrameDataset for training is provided in https://github.
com/RaivoKoot/Video-Dataset-Loading-Pytorch/blob/main/demo.py

3.6 6. Acknowledgements

We thank the authors of TSN for their codebase, from which we took VideoFrameDataset and adapted it.

3.5. 5. Conclusion 7

https://github.com/yjxiong/tsn-pytorch

Video Dataset Loading PyTorch, Release 1.0

8 Chapter 3. Table of Contents

PYTHON MODULE INDEX

v
video_dataset, 1

9

Video Dataset Loading PyTorch, Release 1.0

10 Python Module Index

INDEX

F
forward() (video_dataset.ImglistToTensor static

method), 1

I
ImglistToTensor (class in video_dataset), 1

M
module

video_dataset, 1

V
video_dataset

module, 1
VideoFrameDataset (class in video_dataset), 1

11

	VideoDataset module
	Efficient Video Dataset Loading, Preprocessing, and Augmentation
	Overview: This example demonstrates the use of VideoFrameDataset
	QuickDemo (demo.py)

	Table of Contents
	1. Requirements
	2. Custom Dataset
	3. Video Frame Sampling Method
	4. Using VideoFrameDataset for training
	5. Conclusion
	6. Acknowledgements

	Python Module Index
	Index

