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Efficient Video Dataset Loading, Preprocessing, and Augmentation

To get the most up-to-date README, please visit Github: Video Dataset Loading Pytorch [https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch]

Author: Raivo Koot [https://github.com/RaivoKoot]

If you are completely unfamiliar with loading datasets in PyTorch using
torch.utils.data.Dataset and torch.utils.data.DataLoader, I
recommend getting familiar with these first through
this [https://pytorch.org/tutorials/beginner/data_loading_tutorial.html]
or
this [https://github.com/utkuozbulak/pytorch-custom-dataset-examples].


Overview: This example demonstrates the use of VideoFrameDataset

The VideoFrameDataset class serves to easily, efficiently and
effectively load video samples from video datasets in PyTorch.

1) Easily because this dataset class can be used with custom datasets with
minimum effort and no modification. The class merely expects the video
dataset to have a certain structure on disk and expects a .txt
annotation file that enumerates each video sample. Details on this can
be found below and at
https://video-dataset-loading-pytorch.readthedocs.io/.

2) Efficiently because the video loading pipeline that this class
implements is very fast. This minimizes GPU waiting time during training
by eliminating input bottlenecks that can slow down training time by
several folds.

3) Effectively because the implemented sampling strategy
for video frames is very strong. Video training using the entire
sequence of video frames (often several hundred) is too memory and
compute intense. Therefore, this implementation samples frames evenly
from the video (sparse temporal sampling) so that the loaded frames
represent every part of the video, with support for arbitrary and
differing video lengths within the same dataset. This approach has shown
to be very effective and is taken from “Temporal Segment Networks
(ECCV2016)” [https://arxiv.org/abs/1608.00859] with modifications.

In conjunction with PyTorch’s DataLoader, the VideoFrameDataset class
returns video batch tensors of size
BATCH x FRAMES x CHANNELS x HEIGHT x WIDTH.

For a demo, visit https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch.



QuickDemo (demo.py)

root = os.path.join(os.getcwd(), 'demo_dataset')  # Folder in which all videos lie in a specific structure
annotation_file = os.path.join(root, 'annotations.txt')  # A row for each video sample as: (VIDEO_PATH NUM_FRAMES CLASS_INDEX)

""" DEMO 1 WITHOUT IMAGE TRANSFORMS """
dataset = VideoFrameDataset(
    root_path=root,
    annotationfile_path=annotation_file,
    num_segments=5,
    frames_per_segment=1,
    image_template='img_{:05d}.jpg',
    transform=None,
    random_shift=True,
    test_mode=False
)

sample = dataset[0]  # take first sample of dataset
frames = sample[0]   # list of PIL images
label = sample[1]    # integer label

for image in frames:
    plt.imshow(image)
    plt.title(label)
    plt.show()
    plt.pause(1)
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1. Requirements

# Without these three, VideoFrameDataset will not work.
torchvision >= 0.8.0
torch >= 1.7.0
python >= 3.6







2. Custom Dataset

To use any dataset, two conditions must be met. 1) The video data must
be supplied as RGB frames, each frame saved as an image file. Each video
must have its own folder, in which the frames of that video lie. The
frames of a video inside its folder must be named uniformly as
img_00001.jpg … img_00120.jpg, if there are 120 frames. The
filename template for frames is then “img_{:05d}.jpg” (python string
formatting, specifying 5 digits after the underscore), and must be
supplied to the constructor of VideoFrameDataset as a parameter. Each
video folder lies inside a root folder of this dataset. 2) To
enumerate all video samples in the dataset and their required metadata,
a .txt annotation file must be manually created that contains a row
for each video sample in the dataset. The training, validation, and
testing datasets must have separate annotation files. Each row must be a
space-separated list that contains
VIDEO_PATH NUM_FRAMES CLASS_INDEX. The VIDEO_PATH of a video
sample should be provided without the root prefix of this dataset.

This example project demonstrates this using a dummy dataset inside of
demo_dataset/, which is the root dataset folder of this example.
The folder structure looks as follows:

demo_dataset
│
├───annotations.txt
├───jumping # arbitrary class folder naming
│       ├───0001  # arbitrary video folder naming
│       │     ├───img_00001.jpg
│       │     .
│       │     └───img_00017.jpg
│       └───0002
│             ├───img_00001.jpg
│             .
│             └───img_00018.jpg
│
└───running # arbitrary folder naming
        ├───0001  # arbitrary video folder naming
        │     ├───img_00001.jpg
        │     .
        │     └───img_00015.jpg
        └───0002
              ├───img_00001.jpg
              .
              └───img_00015.jpg





The accompanying annotation .txt file contains the following rows

jumping/0001 17 0
jumping/0002 18 0
running/0001 15 1
running/0002 15 1





Instantiating a VideoFrameDataset with the root_path parameter
pointing to demo_dataset, the annotationsfile_path parameter
pointing to the annotation file, and the imagefile_template
parameter as “img_{:05d}.jpg”, is all that it takes to start using the
VideoFrameDataset class.



3. Video Frame Sampling Method

When loading a video, only a number of its frames are loaded. They are
chosen in the following way: 1. The frame indices [1,N] are divided into
NUM_SEGMENTS even segments. From each segment, FRAMES_PER_SEGMENT
consecutive indices are chosen at random. This results in
NUM_SEGMENTS*FRAMES_PER_SEGMENT chosen indices, whose frames are
loaded as PIL images and put into a list and returned when calling
dataset[i].



4. Using VideoFrameDataset for training

As demonstrated in https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch/blob/main/demo.py, we can use PyTorch’s
torch.utils.data.DataLoader class with VideoFrameDataset to take
care of shuffling, batching, and more. To turn the lists of PIL images
returned by VideoFrameDataset into tensors, the transform
video_dataset.imglist_totensor() can be supplied as the
transform parameter to VideoFrameDataset. This turns a list of N PIL
images into a batch of images/frames of shape
N x CHANNELS x HEIGHT x WIDTH. We can further chain preprocessing
and augmentation functions that act on batches of images onto the end of
imglist_totensor().

As of torchvision 0.8.0, all torchvision transforms can now also
operate on batches of images, and they apply deterministic or random
transformations on the batch identically on all images of the batch.
Therefore, any torchvision transform can be used here to apply
video-uniform preprocessing and augmentation.



5. Conclusion

A proper code-based explanation on how to use VideoFrameDataset for
training is provided in https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch/blob/main/demo.py



6. Acknowledgements

We thank the authors of TSN for their
codebase [https://github.com/yjxiong/tsn-pytorch], from which we
took VideoFrameDataset and adapted it.





            

          

      

      

    

  

    
      
          
            
  
VideoDataset module


	
class video_dataset.ImglistToTensor[source]

	Bases: torch.nn.modules.module.Module

Converts a list of PIL images in the range [0,255] to a torch.FloatTensor
of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) in the range [0,1].
Can be used as first transform for VideoFrameDataset.


	
static forward(img_list: List[PIL.Image.Image]) → torch.Tensor[NUM_IMAGES, CHANNELS, HEIGHT, WIDTH][source]

	Converts each PIL image in a list to
a torch Tensor and stacks them into
a single tensor.


	Parameters

	img_list – list of PIL images.



	Returns

	tensor of size NUM_IMAGES x CHANNELS x HEIGHT x WIDTH














	
class video_dataset.VideoFrameDataset(root_path: str, annotationfile_path: str, num_segments: int = 3, frames_per_segment: int = 1, imagefile_template: str = 'img_{:05d}.jpg', transform=None, test_mode: bool = False)[source]

	Bases: torch.utils.data.dataset.Dataset

A highly efficient and adaptable dataset class for videos.
Instead of loading every frame of a video,
loads x RGB frames of a video (sparse temporal sampling) and evenly
chooses those frames from start to end of the video, returning
a list of x PIL images or FRAMES x CHANNELS x HEIGHT x WIDTH
tensors where FRAMES=x if the ImglistToTensor()
transform is used.

More specifically, the frame range [START_FRAME, END_FRAME] is divided into NUM_SEGMENTS
segments and FRAMES_PER_SEGMENT consecutive frames are taken from each segment.


Note

A demonstration of using this class can be seen
in demo.py
https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch




Note

This dataset broadly corresponds to the frame sampling technique
introduced in Temporal Segment Networks at ECCV2016
https://arxiv.org/abs/1608.00859.




Note

This class relies on receiving video data in a structure where
inside a ROOT_DATA folder, each video lies in its own folder,
where each video folder contains the frames of the video as
individual files with a naming convention such as
img_001.jpg … img_059.jpg.
For enumeration and annotations, this class expects to receive
the path to a .txt file where each video sample has a row with four
(or more in the case of multi-label, see README on Github)
space separated values:
VIDEO_FOLDER_PATH     START_FRAME      END_FRAME      LABEL_INDEX.
VIDEO_FOLDER_PATH is expected to be the path of a video folder
excluding the ROOT_DATA prefix. For example, ROOT_DATA might
be home\data\datasetxyz\videos\, inside of which a VIDEO_FOLDER_PATH
might be jumping\0052\ or sample1\ or 00053\.




	Parameters

	
	root_path – The root path in which video folders lie.
this is ROOT_DATA from the description above.


	annotationfile_path – The .txt annotation file containing
one row per video sample as described above.


	num_segments – The number of segments the video should
be divided into to sample frames from.


	frames_per_segment – The number of frames that should
be loaded per segment. For each segment’s
frame-range, a random start index or the
center is chosen, from which frames_per_segment
consecutive frames are loaded.


	imagefile_template – The image filename template that video frame files
have inside of their video folders as described above.


	transform – Transform pipeline that receives a list of PIL images/frames.


	test_mode – If True, frames are taken from the center of each
segment, instead of a random location in each segment.















            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   d | 
   v
   


   
     		 	

     		
       d	

     
       	
       	
       demo	
       

     		 	

     		
       v	

     
       	
       	
       video_dataset	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 D
 | F
 | I
 | M
 | P
 | V
 


D


  	
      	
    demo

      
        	module


      


  





F


  	
      	forward() (video_dataset.ImglistToTensor static method)


  





I


  	
      	ImglistToTensor (class in video_dataset)


  





M


  	
      	
    module

      
        	demo


        	video_dataset


      


  





P


  	
      	plot_video() (in module demo)


  





V


  	
      	
    video_dataset

      
        	module


      


  

  	
      	VideoFrameDataset (class in video_dataset)


  







            

          

      

      

    

  

    
      
          
            
  
Efficient Video Dataset Loading, Preprocessing, and Augmentation

Author: Raivo Koot [https://github.com/RaivoKoot]

If you are completely unfamiliar with loading datasets in PyTorch using
torch.utils.data.Dataset and torch.utils.data.DataLoader, I
recommend getting familiar with these first through
this [https://pytorch.org/tutorials/beginner/data_loading_tutorial.html]
or
this [https://github.com/utkuozbulak/pytorch-custom-dataset-examples].


Overview: This example demonstrates the use of VideoFrameDataset

The VideoFrameDataset class serves to easily, efficiently and
effectively load video samples from video datasets in PyTorch. 1)
Easily because this dataset class can be used with custom datasets with
minimum effort and no modification. The class merely expects the video
dataset to have a certain structure on disk and expects a .txt
annotation file that enumerates each video sample. Details on this can
be found below and at
https://pykale.readthedocs.io/en/latest/kale.loaddata.html#kale-loaddata-video_dataset-module.
2) Efficiently because the video loading pipeline that this class
implements is very fast. This minimizes GPU waiting time during training
by eliminating input bottlenecks that can slow down training time by
several folds. 3) Effectively because the implemented sampling strategy
for video frames is very strong. Video training using the entire
sequence of video frames (often several hundred) is too memory and
compute intense. Therefore, this implementation samples frames evenly
from the video (sparse temporal sampling) so that the loaded frames
represent every part of the video, with support for arbitrary and
differing video lengths within the same dataset. This approach has shown
to be very effective and is taken from “Temporal Segment Networks
(ECCV2016)” [https://arxiv.org/abs/1608.00859] with modifications.

In conjunction with PyTorch’s DataLoader, the VideoFrameDataset class
returns video batch tensors of size
BATCH x FRAMES x CHANNELS x HEIGHT x WIDTH.

For a demo, visit demo.py. ### QuickDemo (demo.py)

root = os.path.join(os.getcwd(), 'demo_dataset')  # Folder in which all videos lie in a specific structure
annotation_file = os.path.join(root, 'annotations.txt')  # A row for each video sample as: (VIDEO_PATH NUM_FRAMES CLASS_INDEX)

""" DEMO 1 WITHOUT IMAGE TRANSFORMS """
dataset = VideoFrameDataset(
    root_path=root,
    annotationfile_path=annotation_file,
    num_segments=5,
    frames_per_segment=1,
    image_template='img_{:05d}.jpg',
    transform=None,
    random_shift=True,
    test_mode=False
)

sample = dataset[0]  # take first sample of dataset
frames = sample[0]   # list of PIL images
label = sample[1]    # integer label

for image in frames:
    plt.imshow(image)
    plt.title(label)
    plt.show()
    plt.pause(1)
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1. Requirements

# Without these three, VideoFrameDataset will not work.
torchvision >= 0.8.0
torch >= 1.7.0
python >= 3.6







2. Custom Dataset

To use any dataset, two conditions must be met. 1) The video data must
be supplied as RGB frames, each frame saved as an image file. Each video
must have its own folder, in which the frames of that video lie. The
frames of a video inside its folder must be named uniformly as
img_00001.jpg … img_00120.jpg, if there are 120 frames. The
filename template for frames is then “img_{:05d}.jpg” (python string
formatting, specifying 5 digits after the underscore), and must be
supplied to the constructor of VideoFrameDataset as a parameter. Each
video folder lies inside a root folder of this dataset. 2) To
enumerate all video samples in the dataset and their required metadata,
a .txt annotation file must be manually created that contains a row
for each video sample in the dataset. The training, validation, and
testing datasets must have separate annotation files. Each row must be a
space-separated list that contains
VIDEO_PATH NUM_FRAMES CLASS_INDEX. The VIDEO_PATH of a video
sample should be provided without the root prefix of this dataset.

This example project demonstrates this using a dummy dataset inside of
demo_dataset/, which is the root dataset folder of this example.
The folder structure looks as follows:

demo_dataset
│
├───annotations.txt
├───jumping # arbitrary class folder naming
│       ├───0001  # arbitrary video folder naming
│       │     ├───img_00001.jpg
│       │     .
│       │     └───img_00017.jpg
│       └───0002
│             ├───img_00001.jpg
│             .
│             └───img_00017.jpg
│
└───running # arbitrary folder naming
        ├───0001  # arbitrary video folder naming
        │     ├───img_00001.jpg
        │     .
        │     └───img_00017.jpg
        └───0002
              ├───img_00001.jpg
              .
              └───img_00017.jpg





The accompanying annotation .txt file contains the following rows

jumping/0001 17 0
jumping/0002 18 0
running/0001 15 1
running/0002 20 1





Instantiating a VideoFrameDataset with the root_path parameter
pointing to demo_dataset, the annotationsfile_path parameter
pointing to the annotation file, and the imagefile_template
parameter as “img_{:05d}.jpg”, is all that it takes to start using the
VideoFrameDataset class.



3. Video Frame Sampling Method

When loading a video, only a number of its frames are loaded. They are
chosen in the following way: 1. The frame indices [1,N] are divided into
NUM_SEGMENTS even segments. From each segment, FRAMES_PER_SEGMENT
consecutive indices are chosen at random. This results in
NUM_SEGMENTS*FRAMES_PER_SEGMENT chosen indices, whose frames are
loaded as PIL images and put into a list and returned when calling
dataset[i].



4. Using VideoFrameDataset for training

As demonstrated in demo.py, we can use PyTorch’s
torch.utils.data.DataLoader class with VideoFrameDataset to take
care of shuffling, batching, and more. To turn the lists of PIL images
returned by VideoFrameDataset into tensors, the transform
video_dataset.imglist_totensor() can be supplied as the
transform parameter to VideoFrameDataset. This turns a list of N PIL
images into a batch of images/frames of shape
N x CHANNELS x HEIGHT x WIDTH. We can further chain preprocessing
and augmentation functions that act on batches of images onto the end of
imglist_totensor().

As of torchvision 0.8.0, all torchvision transforms can now also
operate on batches of images, and they apply deterministic or random
transformations on the batch identically on all images of the batch.
Therefore, any torchvision transform can be used here to apply
video-uniform preprocessing and augmentation.



5. Conclusion

A proper code-based explanation on how to use VideoFrameDataset for
training is provided in demo.py



6. Acknowledgements

We thank the authors of TSN for their
codebase [https://github.com/yjxiong/tsn-pytorch], from which we
took VideoFrameDataset and adapted it.





            

          

      

      

    

  

    
      
          
            
  
demo module


	
demo.plot_video(rows, cols, frame_list, plot_width, plot_height, title: str)[source]
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  Source code for demo

from video_dataset import  VideoFrameDataset, ImglistToTensor
from torchvision import transforms
import torch
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import os

"""
Ignore this function and look at "main" below.
"""
[docs]def plot_video(rows, cols, frame_list, plot_width, plot_height, title: str):
    fig = plt.figure(figsize=(plot_width, plot_height))
    grid = ImageGrid(fig, 111,  # similar to subplot(111)
                     nrows_ncols=(rows, cols),  # creates 2x2 grid of axes
                     axes_pad=0.3,  # pad between axes in inch.
                     )

    for index, (ax, im) in enumerate(zip(grid, frame_list)):
        # Iterating over the grid returns the Axes.
        ax.imshow(im)
        ax.set_title(index)
    plt.suptitle(title)
    plt.show()


if __name__ == '__main__':
    """
    This demo uses the dummy dataset inside of the folder "demo_dataset".
    It is structured just like a real dataset would need to be structured.
    
    TABLE OF CODE CONTENTS:
    1. Minimal demo without image transforms
    2. Minimal demo without sparse temporal sampling for single continuous frame clips, without image transforms
    3. Demo with image transforms
    4. Demo 3 continued with PyTorch dataloader
    5. Demo of using a dataset where samples have multiple separate class labels
    
    """
    videos_root = os.path.join(os.getcwd(), 'demo_dataset')
    annotation_file = os.path.join(videos_root, 'annotations.txt')


    """ DEMO 1 WITHOUT IMAGE TRANSFORMS """
    dataset = VideoFrameDataset(
        root_path=videos_root,
        annotationfile_path=annotation_file,
        num_segments=5,
        frames_per_segment=1,
        imagefile_template='img_{:05d}.jpg',
        transform=None,
        test_mode=False
    )

    sample = dataset[0]
    frames = sample[0]  # list of PIL images
    label = sample[1]   # integer label

    plot_video(rows=1, cols=5, frame_list=frames, plot_width=15., plot_height=3.,
               title='Evenly Sampled Frames, No Video Transform')



    """ DEMO 2 SINGLE CONTINUOUS FRAME CLIP INSTEAD OF SAMPLED FRAMES, WITHOUT TRANSFORMS """
    # If you do not want to use sparse temporal sampling, and instead
    # want to just load N consecutive frames starting from a random
    # start index, this is easy. Simply set NUM_SEGMENTS=1 and
    # FRAMES_PER_SEGMENT=N. Each time a sample is loaded, N
    # frames will be loaded from a new random start index.
    dataset = VideoFrameDataset(
        root_path=videos_root,
        annotationfile_path=annotation_file,
        num_segments=1,
        frames_per_segment=9,
        imagefile_template='img_{:05d}.jpg',
        transform=None,
        test_mode=False
    )

    sample = dataset[3]
    frames = sample[0]  # list of PIL images
    label = sample[1]  # integer label

    plot_video(rows=3, cols=3, frame_list=frames, plot_width=10., plot_height=5.,
               title='Continuous Sampled Frame Clip, No Video Transform')



    """ DEMO 3 WITH TRANSFORMS """
    # As of torchvision 0.8.0, torchvision transforms support batches of images
    # of size (BATCH x CHANNELS x HEIGHT x WIDTH) and apply deterministic or random
    # transformations on the batch identically on all images of the batch. Any torchvision
    # transform for image augmentation can thus also be used  for video augmentation.
    preprocess = transforms.Compose([
        ImglistToTensor(),  # list of PIL images to (FRAMES x CHANNELS x HEIGHT x WIDTH) tensor
        transforms.Resize(299),  # image batch, resize smaller edge to 299
        transforms.CenterCrop(299),  # image batch, center crop to square 299x299
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    dataset = VideoFrameDataset(
        root_path=videos_root,
        annotationfile_path=annotation_file,
        num_segments=5,
        frames_per_segment=1,
        imagefile_template='img_{:05d}.jpg',
        transform=preprocess,
        test_mode=False
    )

    sample = dataset[2]
    frame_tensor = sample[0]  # tensor of shape (NUM_SEGMENTS*FRAMES_PER_SEGMENT) x CHANNELS x HEIGHT x WIDTH
    label = sample[1]  # integer label

    print('Video Tensor Size:', frame_tensor.size())

    def denormalize(video_tensor):
        """
        Undoes mean/standard deviation normalization, zero to one scaling,
        and channel rearrangement for a batch of images.
        args:
            video_tensor: a (FRAMES x CHANNELS x HEIGHT x WIDTH) tensor
        """
        inverse_normalize = transforms.Normalize(
            mean=[-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225],
            std=[1 / 0.229, 1 / 0.224, 1 / 0.225]
        )
        return (inverse_normalize(video_tensor) * 255.).type(torch.uint8).permute(0, 2, 3, 1).numpy()


    frame_tensor = denormalize(frame_tensor)
    plot_video(rows=1, cols=5, frame_list=frame_tensor, plot_width=15., plot_height=3.,
               title='Evenly Sampled Frames, + Video Transform')



    """ DEMO 3 CONTINUED: DATALOADER """
    dataloader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=2,
        shuffle=True,
        num_workers=4,
        pin_memory=True
    )

    for epoch in range(10):
        for video_batch, labels in dataloader:
            """
            Insert Training Code Here
            """
            print(labels)
            print("\nVideo Batch Tensor Size:", video_batch.size())
            print("Batch Labels Size:", labels.size())
            break
        break


    """ DEMO 5: SAMPLES WITH MULTIPLE LABELS """
    """
    Apart from supporting just a single label per sample, VideoFrameDataset also supports multi-label samples,
    where a sample can be associated with more than just one label. EPIC-KITCHENS, for example, associates a
    noun, verb, and action with each video clip. To support this, instead of each row in annotations.txt
    being (VIDEO_PATH, START_FRAME, END_FRAME, LABEL_ID), each row can also be
    (VIDEO_PATH, START_FRAME, END_FRAME, LABEL_1_ID, ..., LABEL_N_ID). An example of this can be seen in the
    directory `demo_dataset_multilabel`.
    
    Each sample returned by VideoFrameDataset is then ((FRAMESxCHANNELSxHEIGHTxWIDTH), (LABEL_1, ..., LABEL_N)).
    When paired with the `torch.utils.data.DataLoader`, instead of yielding each batch as
    ((BATCHxFRAMESxCHANNELSxHEIGHTxWIDTH), (BATCH)) where the second tuple item is the labels of the batch,
    `torch.utils.data.DataLoader` returns a batch as ((BATCHxFRAMESxCHANNELSxHEIGHTxWIDTH), ((BATCH),...,(BATCH))
    where the second tuple item is itself a tuple, with N BATCH-sized tensors of labels, where N is the 
    number of labels assigned to each sample.
    """
    videos_root = os.path.join(os.getcwd(), 'demo_dataset_multilabel')
    annotation_file = os.path.join(videos_root, 'annotations.txt')

    dataset = VideoFrameDataset(
        root_path=videos_root,
        annotationfile_path=annotation_file,
        num_segments=5,
        frames_per_segment=1,
        imagefile_template='img_{:05d}.jpg',
        transform=preprocess,
        test_mode=False
    )

    dataloader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=3,
        shuffle=True,
        num_workers=2,
        pin_memory=True
    )

    print("\nMulti-Label Example")
    for epoch in range(10):
        for batch in dataloader:
            """
            Insert Training Code Here
            """
            video_batch, (labels1, labels2, labels3) = batch

            print("Video Batch Tensor Size:", video_batch.size())
            print("Labels1 Size:", labels1.size())  # == batch_size
            print("Labels2 Size:", labels2.size())  # == batch_size
            print("Labels3 Size:", labels3.size())  # == batch_size

            break
        break




            

          

      

      

    

  

    
      
          
            
  All modules for which code is available

	demo

	video_dataset




            

          

      

      

    

  

    
      
          
            
  Source code for video_dataset

import os
import os.path
import numpy as np
from PIL import Image
from torchvision import transforms
import torch
from typing import List, Union, Tuple, Any


class VideoRecord(object):
    """
    Helper class for class VideoFrameDataset. This class
    represents a video sample's metadata.

    Args:
        root_datapath: the system path to the root folder
                       of the videos.
        row: A list with four or more elements where 1) The first
             element is the path to the video sample's frames excluding
             the root_datapath prefix 2) The  second element is the starting frame id of the video
             3) The third element is the inclusive ending frame id of the video
             4) The fourth element is the label index.
             5) any following elements are labels in the case of multi-label classification
    """
    def __init__(self, row, root_datapath):
        self._data = row
        self._path = os.path.join(root_datapath, row[0])


    @property
    def path(self) -> str:
        return self._path

    @property
    def num_frames(self) -> int:
        return self.end_frame - self.start_frame + 1  # +1 because end frame is inclusive
    @property
    def start_frame(self) -> int:
        return int(self._data[1])

    @property
    def end_frame(self) -> int:
        return int(self._data[2])

    @property
    def label(self) -> Union[int, List[int]]:
        # just one label_id
        if len(self._data) == 4:
            return int(self._data[3])
        # sample associated with multiple labels
        else:
            return [int(label_id) for label_id in self._data[3:]]

[docs]class VideoFrameDataset(torch.utils.data.Dataset):
    r"""
    A highly efficient and adaptable dataset class for videos.
    Instead of loading every frame of a video,
    loads x RGB frames of a video (sparse temporal sampling) and evenly
    chooses those frames from start to end of the video, returning
    a list of x PIL images or ``FRAMES x CHANNELS x HEIGHT x WIDTH``
    tensors where FRAMES=x if the ``ImglistToTensor()``
    transform is used.

    More specifically, the frame range [START_FRAME, END_FRAME] is divided into NUM_SEGMENTS
    segments and FRAMES_PER_SEGMENT consecutive frames are taken from each segment.

    Note:
        A demonstration of using this class can be seen
        in ``demo.py``
        https://github.com/RaivoKoot/Video-Dataset-Loading-Pytorch

    Note:
        This dataset broadly corresponds to the frame sampling technique
        introduced in ``Temporal Segment Networks`` at ECCV2016
        https://arxiv.org/abs/1608.00859.


    Note:
        This class relies on receiving video data in a structure where
        inside a ``ROOT_DATA`` folder, each video lies in its own folder,
        where each video folder contains the frames of the video as
        individual files with a naming convention such as
        img_001.jpg ... img_059.jpg.
        For enumeration and annotations, this class expects to receive
        the path to a .txt file where each video sample has a row with four
        (or more in the case of multi-label, see README on Github)
        space separated values:
        ``VIDEO_FOLDER_PATH     START_FRAME      END_FRAME      LABEL_INDEX``.
        ``VIDEO_FOLDER_PATH`` is expected to be the path of a video folder
        excluding the ``ROOT_DATA`` prefix. For example, ``ROOT_DATA`` might
        be ``home\data\datasetxyz\videos\``, inside of which a ``VIDEO_FOLDER_PATH``
        might be ``jumping\0052\`` or ``sample1\`` or ``00053\``.

    Args:
        root_path: The root path in which video folders lie.
                   this is ROOT_DATA from the description above.
        annotationfile_path: The .txt annotation file containing
                             one row per video sample as described above.
        num_segments: The number of segments the video should
                      be divided into to sample frames from.
        frames_per_segment: The number of frames that should
                            be loaded per segment. For each segment's
                            frame-range, a random start index or the
                            center is chosen, from which frames_per_segment
                            consecutive frames are loaded.
        imagefile_template: The image filename template that video frame files
                            have inside of their video folders as described above.
        transform: Transform pipeline that receives a list of PIL images/frames.
        test_mode: If True, frames are taken from the center of each
                   segment, instead of a random location in each segment.

    """
    def __init__(self,
                 root_path: str,
                 annotationfile_path: str,
                 num_segments: int = 3,
                 frames_per_segment: int = 1,
                 imagefile_template: str='img_{:05d}.jpg',
                 transform = None,
                 test_mode: bool = False):
        super(VideoFrameDataset, self).__init__()

        self.root_path = root_path
        self.annotationfile_path = annotationfile_path
        self.num_segments = num_segments
        self.frames_per_segment = frames_per_segment
        self.imagefile_template = imagefile_template
        self.transform = transform
        self.test_mode = test_mode

        self._parse_annotationfile()
        self._sanity_check_samples()

    def _load_image(self, directory: str, idx: int) -> Image.Image:
        return Image.open(os.path.join(directory, self.imagefile_template.format(idx))).convert('RGB')

    def _parse_annotationfile(self):
        self.video_list = [VideoRecord(x.strip().split(), self.root_path) for x in open(self.annotationfile_path)]

    def _sanity_check_samples(self):
        for record in self.video_list:
            if record.num_frames <= 0 or record.start_frame == record.end_frame:
                print(f"\nDataset Warning: video {record.path} seems to have zero RGB frames on disk!\n")

            elif record.num_frames < (self.num_segments * self.frames_per_segment):
                print(f"\nDataset Warning: video {record.path} has {record.num_frames} frames "
                      f"but the dataloader is set up to load "
                      f"(num_segments={self.num_segments})*(frames_per_segment={self.frames_per_segment})"
                      f"={self.num_segments * self.frames_per_segment} frames. Dataloader will throw an "
                      f"error when trying to load this video.\n")

    def _get_start_indices(self, record: VideoRecord) -> 'np.ndarray[int]':
        """
        For each segment, choose a start index from where frames
        are to be loaded from.

        Args:
            record: VideoRecord denoting a video sample.
        Returns:
            List of indices of where the frames of each
            segment are to be loaded from.
        """
        # choose start indices that are perfectly evenly spread across the video frames.
        if self.test_mode:
            distance_between_indices = (record.num_frames - self.frames_per_segment + 1) / float(self.num_segments)

            start_indices = np.array([int(distance_between_indices / 2.0 + distance_between_indices * x)
                                      for x in range(self.num_segments)])
        # randomly sample start indices that are approximately evenly spread across the video frames.
        else:
            max_valid_start_index = (record.num_frames - self.frames_per_segment + 1) // self.num_segments

            start_indices = np.multiply(list(range(self.num_segments)), max_valid_start_index) + \
                      np.random.randint(max_valid_start_index, size=self.num_segments)

        return start_indices

    def __getitem__(self, idx: int) -> Union[
        Tuple[List[Image.Image], Union[int, List[int]]],
        Tuple['torch.Tensor[num_frames, channels, height, width]', Union[int, List[int]]],
        Tuple[Any, Union[int, List[int]]],
        ]:
        """
        For video with id idx, loads self.NUM_SEGMENTS * self.FRAMES_PER_SEGMENT
        frames from evenly chosen locations across the video.

        Args:
            idx: Video sample index.
        Returns:
            A tuple of (video, label). Label is either a single
            integer or a list of integers in the case of multiple labels.
            Video is either 1) a list of PIL images if no transform is used
            2) a batch of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) in the range [0,1]
            if the transform "ImglistToTensor" is used
            3) or anything else if a custom transform is used.
        """
        record: VideoRecord = self.video_list[idx]

        frame_start_indices: 'np.ndarray[int]' = self._get_start_indices(record)

        return self._get(record, frame_start_indices)

    def _get(self, record: VideoRecord, frame_start_indices: 'np.ndarray[int]') -> Union[
        Tuple[List[Image.Image], Union[int, List[int]]],
        Tuple['torch.Tensor[num_frames, channels, height, width]', Union[int, List[int]]],
        Tuple[Any, Union[int, List[int]]],
        ]:
        """
        Loads the frames of a video at the corresponding
        indices.

        Args:
            record: VideoRecord denoting a video sample.
            frame_start_indices: Indices from which to load consecutive frames from.
        Returns:
            A tuple of (video, label). Label is either a single
            integer or a list of integers in the case of multiple labels.
            Video is either 1) a list of PIL images if no transform is used
            2) a batch of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) in the range [0,1]
            if the transform "ImglistToTensor" is used
            3) or anything else if a custom transform is used.
        """

        frame_start_indices = frame_start_indices + record.start_frame
        images = list()

        # from each start_index, load self.frames_per_segment
        # consecutive frames
        for start_index in frame_start_indices:
            frame_index = int(start_index)

            # load self.frames_per_segment consecutive frames
            for _ in range(self.frames_per_segment):
                image = self._load_image(record.path, frame_index)
                images.append(image)

                if frame_index < record.end_frame:
                    frame_index += 1

        if self.transform is not None:
            images = self.transform(images)

        return images, record.label

    def __len__(self):
        return len(self.video_list)


[docs]class ImglistToTensor(torch.nn.Module):
    """
    Converts a list of PIL images in the range [0,255] to a torch.FloatTensor
    of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) in the range [0,1].
    Can be used as first transform for ``VideoFrameDataset``.
    """
[docs]    @staticmethod
    def forward(img_list: List[Image.Image]) -> 'torch.Tensor[NUM_IMAGES, CHANNELS, HEIGHT, WIDTH]':
        """
        Converts each PIL image in a list to
        a torch Tensor and stacks them into
        a single tensor.

        Args:
            img_list: list of PIL images.
        Returns:
            tensor of size ``NUM_IMAGES x CHANNELS x HEIGHT x WIDTH``
        """
        return torch.stack([transforms.functional.to_tensor(pic) for pic in img_list])
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